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A characterization of functional realizations of three- 
dimensional quantum groups 
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Departamento de Fisica Te6rica. Universidad de Valladolid, 47011 Valladolid, Spain 

Received 20 March 1992 

Abstract. We study in an exhaustive and systematic way the functional realizations 
of quantum and classical algebras related with SU(2), SU(1,l) and the oscillator 
group Os(1). In order to achieve this purpose we have adopted a mapping that is 
a generalization of an  algebra expansion procedure. We have not transformed the 
algebras themselves, but their representalions. This method enables us not only IO 

relate 'classicaal' algebras and their q-analogues, but also different-type algebras (whether 
they are quantum or not). We have obtained and classified all possible q-realizations, 
including as particular cases all lhose already known in the literature. 

1. Introduction 

Quantum groups have recently become an intense research field in both mathematics 
and physics 11-31, There are several approachs to the study of deformations of 
universal enveloping algebras, as well as a widespread set of applications (an extensive 
review is given in [4] and references therein). We try in this work to get a deeper 
insight into the deforming maps point of view [5-71. 

In this paper we centre our attention on the commutation relations of a quantum 
algebra. Our aim is to express the generators of that algebra as functions of the non- 
deformed Lie algebra generators. That is, we are embedding the quantum generators 
in the enveloping algebra of the 'classical' structure by means of an algebra expansion 
procedure. It is already known [8] that if we take the two-dimensional Euclidean 
group E(2) with generators { J 3 ,  P,, P-} and commutation relations 

[ J 3 ,  P+l = *P* [P+ > 91 = 0 (1.1) 

where P, P- = Pz + Pz = p z  = C is the Casimir element, we can reach the SU(2) 
algebra by defining SU(3) generators as an expansion of E(2) as follows: 

J3 = J3 J ,  = P+ft(J3) J -  = f-(J3)P-. (1.2) 

It is easy to verify that choosing f + ( J 3 )  = f - ( J 3 )  = i/(2p)(2J3 + l), we obtain 
[ J 3 , J * ]  = iJ* and [ J + , J - ]  = ZJ,. In  this paper we show that it is possible 
to develop a similar construction relating three-dimensional algebras and their q- 
deformed analogues. To get the explicit functional form of this quantum expansion 
we have to act on a representation space of the non-deformed algebra. Therefore, 
what we are actually doing is deforming the classical representations into the quantum 
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ones. By choosing a certain mapping and imposing the commutation rules of the 
deformed algebra, we find and characterize all possible functional realizations of the 
quantum algebras under study. 

In the following we carry out a systematic study of the quantum deformations 
of the algebras generating SU(2), SU(1,l)  and the oscillator group Os(1). 
These algebras appear if we consider three generators h,e ,  f such that 
[ h ,  e ]  = e ,  [h,  f] = -f. Including the identity (that always helongs to the enveloping 
algebra), the third non-trivial commutation relation (up to normalization) must be 
[e, f ]  = +h or [e, f] = I if it is required that they close a Lie algebra. Each of 
these possibilities gives rise, respectively, to the three afore-mentioned algebras, which 
have a precise physical meaning as underlying structures of kinematical geometries: 
SU(2) yields an elliptic geometry, SU(1,l) a hyperbolic one and OS(1) is isomorphic 
to the extended Newton-Hooke group that expresses the symmetry properties of 
an oscillating universe [9]. The latter seems to play an outstanding role in what 
follows, perhaps due to the fact that Os(1) can be obtained from the other two by a 
contraction. On the other hand, it is well known that oscillator realizations can be 
used to build representations of other groups (‘boson realizations’) [lo]. Here we shall 
always work with the ‘n’ representation, but the role of other Os(1) representations 
will be discussed elsewhere. 

in section 2 we obtain the 
characterization of all possible q-analogues of each of these algebras. In this sense, 
an algebra and its q-deformed algebra will be said to be algebras of the same 
type (belonging to a class of q-algebras, in which by making q = 1 we recover 
the classical structure). Section 3 is devoted to analysing the properties of the so- 
called ‘characteristic functionals’. These objects contain the conditions we have to 
impose on the deforming mappings to produce q-deformations. In section 4 we 
apply our method to deform one type of algebra into a different one. We thus 
obtain the characterization of all functional realizations among different-type algebras 
(quantum or classical). The results obtained allow us to build all quantum realizations. 
We recognize among them those already known in the literature. Besides this, all 
non-quantum realizations appear as q = 1 cases within this framework. Hence, 
this method provides a structured and rather flexible scheme to understand algebra 
deformations. 

Throughout this paper, we will consider Jimbo deformations [ll], and use the 
notation 
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We deform these algebras in two directions: 

With these definitions [z], = 
parameter. 

and {z], = {z},-$. Hereafter q will be a real 

2. Functional realizations of SU(2)q, SU(1, l)q and Os(l), 

We shall introduce our method for SU(2), with certain detail, while for the other 
two cases (i.e. SU( 1.1) and the oscilator group Os(l),, that can be dealt with along 
the same lines) we shad remark the differences and final results. 
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2.1. Realizations of SU(2), 

Let us consider the Lie algebra of SU(2) given by 

[ J 3 , J * 1  = *J* 

[ J + , J - 1 = 2 5 3  
(2. la)  
(2.16) 

and its representations 

J3 m, = nL l j, m)  J+ lj, m) = J ( j  ? T f L ) ( j  * 7% + 1 )  lj, m * 1 )  (2.2) 

where j is given by the eigenvalue of the Casimir operator 

c = ( J 3 -  ; ) 2 + J + J -  = ( j +  f)’ (2.3) 

and - j  < m < j .  We shall try to deform the commutation rules (2.1) into the 
quantum Sup), algebra [ l l ]  

(2.4a) 

(2.46) 

by means of the operators J3,  J ,  defined in the representation space given by (2.2). 
That is, we deform the representation, so we have to keep in mind that the final 
expressions that we shall arrive at will be meaningful only when applied to vectors 
of such spaces. In the expansion process it is possible that even the dimension of 
the representation space could change. So this point of view (with some limitations) 
takes into account a wide range of possibilities, as we shall see. 

Within the space (2.1), we have in general 3-* = J’*(J*,J3) and l3 = 
J 3 ( J + , J 3 ) ,  but here we shall adopt the simplest solution 

3-3 = 53 3-+ = J t f + ( J 3 )  3- = f - ( J 3 ) J - .  (2.5) 

In doing so we keep valid the commutator (2 . la) ,  while f +  and f -  are functions 
which remain to be found, with the condition that (2.46) is to be verified. Observe 
that there also exists the possibility f 3  = J3 + c without modifying (2.4~~).  But we 
are interested in the easiest realization, and when we choose c = 0 we simply avoid 
displacing the spectrum of J3 .  We impose that on a generic ket lj,m) (2.46) is 
satisfied: 

[3-+,3--] lJ”) = [23-31, Ibm) = [2J3Iq l j m )  = [2m], Ib”) . (2.6) 

If we substitute 3-* using (2.5) we get 

( j+m)( j -m + 1 )  f + (  nL-1) j- ( ~ ~ L - l ) - ( j - m ) ( j + ~ L + l )  f -  (nL)f+(m) = [h], . 
(2.7) 

Once the half-integer number j is fixed, this relationship is to be verified for every 
-j < W L  j, while for n~ = - j  we have 

(2.8) 
1 

f-(-j)f+(--j) = 5 [ 2 ( - d I q  ’ 
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In this way we have a recurrence given by (2.7) whose first term is (2.8). Therefore 
we get the solution 
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1 
f - ( n t ) f + ( m )  = - {[2n1I9 + [2(77z - 1)1, + " ' +  [2( - j ) I9} .  ( j  - m ) ( j  + m + 1)  

(2.9) 
The sum 

s = - { [ 2 4 ,  + [2(m - 111, + ' . .  + [2(-j)iq1 
can be carried out easily by means of sum of geometric series and we get 

2 ( i + i )  + 4-4i+i) - q 2 ( m + i )  + ¶- 

= [ j  - mI,[j + m + 1Iq . S =  4 ( 
(4 - ¶-'I2 

Finally we have 

(2.10) 

We can change m for J3, since they act in the same way on the ket 1j3m). The 
operator defined by the diagonal elements (2.10) in the basis lj ,m) will be called 
characteristic functional A ( j I j ,  ) and describes the deformations of the representation 
'j' of SU(2) into that labelled 'j,' of SU(2),. Since this is the only condition on f*, 
we have a great deal of freedom to choose ft  and f- separately. We show this as 
follows: 

These solutions include the ones given in 161. Remark that in the limit q - 1, 
f* - 1, as it should be. Now we take some 'natural' elections for f*. 

2.1.1. The standard realization (a = b = 0) .  If we impose that .7* be Hermitian 
conjugate, there exists, up to  a sign, only one solution: 

f: = J3  

(2.12) 

We call this election the standard realization, and the action of the deformed 
operators is already well known [ll]: 

1; lj, m)  = m l j ,  nz) 3: lj, m) = J[j 7 nt],[j * nt + 11, l j ,  nt * 1) . (2.13) 
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2.1.2. Deforming only one generator (a = b = -f). Another interesting possibility is 
to keep the maximum of generators unchanged at the cost of missing the Hermiticity 
relation. If for example we choose f+( J3)  = 1, we get rid of the square root: 

(2.14) 

(2.15) 

2.1.3. An asymmeiric deformation (a = i, b = -f). Another ‘natural’ election is the 
following one: 

This is just the representation given by Macfarlane [12] by means of differential 
operators in one angular variable 

3; = <‘+[U + ia,], 3: = ~ - i + [ j  - ia,] 3; = -ia+ (2.17) 

and where the basis l j ,  m) is realized by the set of functions Gifn+’ 

2.1.4. The Casunir operaror. The Casimir operator for SU(2), is [ l l ]  

q 

2 c, = [33 - fl, t 3+l- . (2.18) 

If we substitute the functional expression for the generators, we get 

2 
c , = [ J 3 - t l q  + J + A ( j I j , ) J - .  (2.19) 

Now we let this expression act on a ket lj, m)  and the result is 

c, ~ j , ~ ~ )  = [ j  + 41; l j ,  = idq:lj, 712) . (2.20) 

That is, the Casimir depends only on the functional A ( j l j q ) ,  and its eigenvalues are 
just the q-analogues of the non-deformed operator ones. 

Ohserve that the commutator [.7+,3-] = [2J3], appears as a difference 

of relations are a consequence of the quantum representation structure for the three 
types of algebras considered here. Let us compute 113- l j ,  m + 1) 11’ - 113- l j ,  772) 11’ 
in the standard q-realization. 

[& + i]: - [I3 - ? I q  1 2  - - [2J3],. We shall show in the following that these kinds 



5950 A Ballesteros and J Negro 

If we denote ,7+ l j ,  na) = an, l j ,  ?n + l),  where a, > 0, its Hermitic counterpart 
can be written as 3- l j ,  nt + 1) = a, l j ,  m). Making use of this notation 

( j ,m + II.7+.7- lj, 7n + 1) - ( j ,  ntl .7+.7- lj, m) 
= ( (5  ml a 2 7 4  .7+ (a ,  l j, n7)) - ( j , m  3J.. lj, m) 

= ( j ,  [I- 1 I+] lj, m) = ( j ,  ~ n l -  [2.7319 lj, m)  . 
We may also compute this in a different way. Since 

(2.21) 

2 .7+L = 4 . 7 3  - $1; + [ j  + fl ,  
we substitute and get 

( j , m + l I ( - [ . 7 ~ - f l ~ + [ j + f l ; )  l j , n L + l ) - ( j , n L I ( - [ 3 3 - $ 4 1 ? ,  

2 2 
.+[ j  + $1;) lb,nl) = (j,ml (-[.73 + $1, + 1.73 - $1,) U, m) . 

These two results lead us to the identity 

(2.22) 2 2 
i.73 + + I ,  - 1.73 - $1, = [2.731,. 

We thus conclude that [I+, 3-1 = [2J3], is an operator whose expected value on 
a certain state l j ,  m) expresses the difference of norms when .7- (or I+) acts on 
lj,m + 1) and I j , m ) .  This meaning remains valid for SU(1 , l )  and Os(1)-type 
algebras. 

2.2. Realizations for the q-oscillator 

We follow the same pattern as in the previous case and begin with the commutation 
rules of the unidimensional oscilator algebra 

[ N , a + ]  = a +  [ N , a ]  = -a  [U,.'] = I (2.23) 

and the representation space 

N I ~ )  = n 1.) a+In) = -ln+ 1) a l n )  = 61. - 1 )  . (2.24) 

Here the Casimir operator is C = N - a'a. Accordingly, the representation (2.24) 
corresponds to the eigenvalue C = 0. We shall call this the 'n' representation. The 
commutators for the qdeformed oscillator are [ E ,  131 

[N ,&+]  = & +  ' Z [ N , & ] = - i  (2.25a) 

(2.256) 

We shall use the same ansatz to turn the representdtion (2.24) into the quantum- 
deformed (2.25): 

N = N  & + = a t f f ( N )  k = f - ( N ) a .  (2.26) 
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Note that in (2.26) the number operator has been chosen such that the lowest 
eigenvalue has not been deformed and that we have started with commutation rules 
(2.25) symmetric under the replacement q - q-' (compare in this respect with that 
given in [14]). If we apply (2.256) on a state In), TI # 0 we obtain 

(2.27) ( n  + l ) f - ( n ) f f ( n )  - n f f ( n  - l ) f - ( n -  1) = {n + t ) ,  
and for n = 0 this is f - ( O ) f + ( O )  = { f )  . As an immediate consequence we have 

q 

This sum can be computed easily and we obtain 

(2.29) 

The operator defined by the diagonal elements (2.29) is the characteristic functional 
A(nln  ), and it is the relevant object in the deforming process. The general solutions 
of (2.24) can be displayed as 

2.2.1. Some q l i c i t  realizations. In particular if &+ and 6 are Hermitian-conjugated 
we obtain the standard realization ( A  = 0) [12] 

No In) = n In) 

(2.31) 

Another case of interest consists in deforming only one operator, for example &+ 
( A  = f). In this case we have 

Nil, 1.) = n. 17%) 

(2.32) 

In) = a In) = f i I n  - 1) 

2.2.2. The q-Casimir of the quantum algebra Os(l), is 
Cq = [ N I 4  - &+&. Its eigenvalue for the representation (2.32) is Cq = 0. Remark 
that !he x ~ ~ n t a t n r  [z, z+] is (2.2%) csc be cxpysed s the difference of the 
action of the q-number operator [NI, on two sucessive states 

The Casiniir operator. 

[N + 1Iq - [NI, = { N + 1 1 , .  
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2.3. Realizations for SU (1  l ) ,  
The commutation rules for SU( 1, I), are 

[IC3, l i + ]  = &I<* [Ii+, I<-]  = -[21<3]q . (2.33) 
Here we consider the positive discrete series representations characterized by the 
eigenvalue 1 > 0 of the Casimir operator 

A Ballesteros and J Negro 

c = ( I ~ ~ 3 - ~ ) z - I ~ . + ~ ~ . - = ( 1 - ~ )  1 2  . 
(Negative discrete series representations 1 < 0 can be given an analogous treatment.) 
Representations corresponding to these series take the form 

Ii311, 2 )  = z l l ,  2) 

(2.34) 

where 2 = 1 , l +  1 ,1+2 , .  . .. 
rules [U]: 

As always, we shall deform the representation (2.33) according to the ansatz 

The quantum deformation of this algebra has the following commutation 

[IC3,K*] = fK+ [IC+,IC-I = - [ X 3 I q .  (2.35) 

IC, = IC, K+ = K + f + ( I C , )  IC- = f - (I i3)1c.  (2.36) 

We get the same kind of solution for the product f+f- of the form 

-[2(2 - 1 - IC - l)], - . . . - [2(-1)1,} (2.37) 

from which we get the final expression 

For the standard realization we have the symmetric solution j+( A',) = f-( IC3) 
corresponding to Hermitian-conjugated operators IC+ and IC-. In this case the actions 
of the generators IC3, IC, on the basis kets are given by the q-analogues of (2.34). The 
Casimir operator for the quantum group is C, = [ I C 3  - 41; - K+X- = [ 1  - $1, [U]. 

We remark that we have taken non-trivial realizations on the discrete series 
characterized by 1 > 0. However, there exists the iimit of the Lharacteristic hnctionai 
when 1 -+ 0 

2 

(2.39) 

This is just the functional associated to the 1 = 0 continuous series representations 
of SU( l , l )q  obtained in (61 and (161. 

Note that in this case a similar relationship to that given for SU(2), holds, namely 

(2.40) 2 2 
[ I C 3  + $1, - [K3 - $1, = [2&lq . 
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3. Properties of the Characteristic functional 

In principle we can apply the aforementioned method to deform a (classical or 
quantum) algebra into another (classical or quantum) algebra of the same or different 
type. The deforming process will be characterized by a functional A(a(b ) ,  where R 

is for the initial representation and b for the final one; if any of these algebras is 
quantum it will be explicitly designed, for example, by b In this section we show 
some simple properties of the functionak A(alb) which $11 be helpful in obtaining 
and characterizing in a systematic way all deformations between any pair of algebras. 

Property 1. All the realizations obtained for different choices of the deforming 
functions g* corresponding to the same functional, A(ajb) ,  are equivalent. 

We can show this properly for the three cases SU(2),, SU( 1, l ) ,  and Os(l) ,  at 
the same time, since their (classical) structure is similar: it is made up of two step 
generators, e for the upper and f for the lower, together with a diagonal one, h. 
The deformed generators 6 ,  f, k ,  take the form 

h = h + X  d = e g + ( h )  f = g - ( h ) f .  (3.1) 

The standard realization c s , f s , k s  is characterized by g + ( h )  = g - ( h )  or by the 
equivalent relation 6: = f,. First we shall show the equivalence of any realization 
{ E ,  ,f} with the standard {GS, fs} through a Hermitic operator I i ( h )  that depends 
only on h: 

I'-'(h)G l i ( h )  = 6, l < - l ( / z ) f  Ii(/l) = f,. (3.2) 

( I < - ' ( / L ) ~ / < ( / L ) ) +  = I<- ' (h )+I { (h )  = / i (h)f+I<- ' ( /z) .  

I i ( / i ) * e g - ( h )  = e g + ( h ) I i ( h ) ' .  (3.4) 

Since s,+ = fs, 

(3.3) 

From (3.2) and (3.3) we get 

If we design by Ih,) a discrete basis, where h Ih,) = h, lh, )  and Ih,} is the lowest state, 
we have that, within this space, relation (3.4) gives rise to the following recurrence: 

Let us employ the notation (hjlI i (h) lhi)  = l < ( h , ) .  Then, given an arbitrary value 
I(( ho),  we obtain the solution 

li( h,) . (3.6) 
g + ( h ,  - l ) g + ( h ,  - 2 ) .  . . g + ( h ,  + 1 )  

I i ( l 1 , )  = 
g - ( h , - l ) g - ( h , - 2 )  . . . g -  ( h O + l )  

This operator gives us the equivalence between any deformed realization g* and the 
standard 9,"; hence by transitivity we have really shown the equivalence between any 
pair of realizations. 
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Property 2 .  If there exists A(alb)  and A(b lc )  then A ( + )  also exists and is given by 

This transitive properly is a direct consequence of the fact that any functional A is 
defied by a product g+g- which obviously shares this property. 

A(+) = A(alb)  A ( b l c ) .  (3.7) 

Property 3. If A ( a l b )  has an inverse, then 

Property 3 is a straightforward corollary of property 2. 
A ( b l a )  = A(aIb)- ' .  

Property 4 .  If some (or both) a ( q l ,  b(q)  are quantum algebras, then 

lim A(a(911b(q)) = A(alb). (3.9) 
9-1 

It is easy to show this property as a consequence of the way that the functionak have 
been constructed. Property 4 can be useful in deriving some classical relationships 
starting with more general deformed expressions, as we shall see in the following 
sections. 

4. Functional realizations relating different algebras 

We may also look for the functional realizations relating algebras of different type 
by applying the same expansion method. We assume that diagonal operators of the 
two algebras are related by a linear transformation, and the constant is chosen to 
ensure that the vector with eigenvalue 0 under the lowering operator coincides in 
both representations. This constant will label the thus-obtained realizations. 

4.1. Oscillator reolizafions of SU(1, I),, 
If we define 

with 1 > 0, we have an action on a number state space such that IC, 10) = 1 IO), and 
K- 10) = 0. A straightfonvard calculation shows that [ K , , K + ]  = iX, and (2.33) 

x, = N + 1 K+ = a f g + ( N )  x- = y-(N)a  (4.1) 

!e& zs i~ the f;&-&fferefice q&afi give!! by 
7 1 g t ( 7 ~ - 1 ) g - ( n - 1 ) - ( n + l ) g - ( n ) g t ( 7 ~ )  = - (2(n+1)I9 .  (4.2) 

The solution is easily found by the recursion method used before and the 
expression for the characteristic functional is 

! N  + 21I9[N + 'Ip . (4.3) 
( N + 1 )  NnIlq)  = g t ( W g - ( N )  = 

An explicit action on the number state space describes the q-analogue of the 
positive discrete series of SU(1, l ) .  For instance, by choosing g + (  N )  = g - ( N ) ,  we 
obtain 

K, In) = ( n  + 1 )  1 7 1 )  

A- l w \  = . /[. + I]$/ + nl 111 + 1) 
'-+ ~ v ' 9  ' 

K- In) = ,/-I71 - 1) 

So we can identify In) = 11, z = n + 1 ) ,  according to (2.34). 



Characterization of three-dimensional quantum groups 5955 

4.2. Oscillator realizations of SU(2), 
We may apply the same scheme to the SU(2), algebra by writing 

L73= N - j  j = O , z , l  1 ... (4 .54 

L7- = g - ( N ) a .  (4.5c) 
(The Gfi&eGE & le) = -j [a) & say&fieq The fini:e-diffeienci iqiia~ofi & the:, 

ng+(n - l )s-(n - 1) - ( n  + l)g-(n)g+(n) = [2(n - j)], (4.6) 

Jt = a+g+(N)  (4.56) 

and any solution must fulfil the following condition: 

The symmetric solution yields an action on the states In) described by the equations 

1 3  In) = ( n  - j) In) 

J+ I.) = J m i n  + 1) 

3- In) = 4 W I n  - 1) . 
(4.8) 

If we consider only the subspace spanned by the number states In), ( n  = 
0, 1 ,  . . . ,2 j )  labelled as vectors l j ,  m = n - j) we immediately deduce that 

(4.9) 

J- l j ,  m )  = J [ j  + m],[j - m + 11, l j ,  m - 1) . 
These equations are formally identical to the standard realization of SU(2),. 

4.3. SU(2), realizations on SU(1,I)  

If we take SU(1,l) as the starting group, we build the functional realizations of 
SU(2), on the positive discrete series labelled by 1 and supported by vectors 11, z )  
defining 

& = 1 C 3 - j - 1  j = o , f , l  ... Jt = IC+g+(Ii,) 3- = g-(K3) I < - .  
(4.10) 

We thus obtain the following equation: 

(z-~)(~+~-l)g+(z-l)g-(z-l)-(z+1)(z-1+l~g-(z)g+(z) = [ 2 ( z  - j - l ) ] ,  
(4.11) 

which is equivalent to writing 

[Ii3 - 1 + 1],[2j + 1 - K 3 ] ,  . (4.12) A ( l l j , )  = g+(IiP3)g-(Ii3) = ( ri, - I + I)( K, + 1 )  
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The Hermitic solution acts on 11, Z) as follows: 

J3 I I ,z)  = ( z  - j  - 1 )  II ,z)  

[ z  - 1 + 11,[2j + 1 - Z l 9  I I ,  z + 1) (4.13) J-+ 11, 2) = 4 

The first of these equations expresses the equivalence I I ,  z )  = lj,m), where 
m = z - 1 - j .  If we replace z in (4.13) we obtain again the standard action (2.13). 

4.4. &-oscillator realizations on SLJ(1, I )  

In this case we define the relation between N and Ii3 as the reciprocal relation to 
the first of the (4.1) equations: 

N = li, - 1 a+ = l i+g+(N)  ; = g - ( N )  h -  . (4.14) 

Therefore, we preserve N I I )  = 0 / I ) .  
The characterization of the functional realizations is given by 

(4.15) 
[ I C ,  - 1 + 119 

(IC, - I + l)(IC, + I )  ’ 
A ( I [ n 9 )  = g+(Itv3)g-(1tv3) = 

The action of the standard election on the discrete series basis vectors emerges 
as 

NoIz,I) = ( 2  - 1 )  I Z , ~ )  

(4.16) 

and with the labelling In) E I z , ~ )  with n = z - I we obtain (2.31). 
We want to stress here in which cases the existence of the inverse for the functional 

realization is guaranteed. It is easy to check that all the q-analogues of these three 
algebras built on their own representation space (section 2) are invertible. However, 
the results in the present section show that there exist non-invertible functional 
realizations. The problems arise with the compact group, SU(2) and its q-analogue. 
The latter can be constructed from SU(1 , l )  and also from the oscillator group, but 
both functionals (4.7) and (4.12) are not invertible since their action on certain states 
gives a zero eigenvalue (A(7%l jq )  In = 2j)  = 0 and A ( l l j q )  11,z = 2 j  + 1 )  = 0). This 
is an expected result: we may reduce an infinite representation space belonging to a 
non-compact group by choosing a subspace of states (the lowest ones in our case). 
On this ‘compact’ subspace we may build a realization of the compact group. The 
reversal is not possible, and hence the realization must be non-invertible. 

4.5. Realizations involving two quantum algebras 

It is straightfonvard to characterize the functional realizations of a quantum algebra 
in terms of another quantum algebra belonging to a different class by taking into 
account the properties we have just shown in section 3. 
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4.5.1. S U f l , l ) q  realizations on Os(l) , .  The deformation described in section 4.1 
which relates 

Os( 1) A%q) S W > 1 ) ,  

with characteristic function given by (4.3) can be seen as a composition of 
deformations: 

Since we have shown that A(nll,) = A ( + ~ , ) A ( ~ L , ~ ~ , )  (equation (3.7)) under 
the appropriate translation of diagonal operators, we find that the deformation 

IC3 = N +  1 = N + 1 Kt = i t g t ( N )  IC- = g - ( h r ) 6  (4.17) 

is characterized by 

A(n,Il,) = g + ( N ) g - ( N )  = [N+ 211,. (4.18) 

The most common known realizations between these two quantum algebras are 
included in (4.18). Imposing the Hermitic condition we obtain all the q-analogues of 
the Holstein-Primakoff realizations of SU( 1 , l )  [17-191. We also obtain Dyson-type 
realizations choosing g + ( N )  = I or g - ( N )  = I .  For instance, in the first case, we 
may write as a realization of SU(1, l), 

K f = N + l = N + l  I C $ = & +  IC! = [ N  + 21],6. (4.19) 

It is important to remark that transformations (4.18) turn the Os(l) ,  q-Casimir 

(4.20) 

and substitute these deformed generators in terms ofK3,1C, (equation (4.17)), we 
obtain 

into that of S U ( l , l ) , .  If we start with 

[NI, - a -+-  u = O  

or 

[IC3 + 1 - l],[IC3 - 11, - IC+IC- = 0 .  

W g  into account the fact that IC, is diagonal and making use of the following 
identity for q-numbers: 

2 
[KC, - 3: - IC.&- = [ 1 -  41, 

(4.21) 

which is the q-Casimir for SU(1, l ) ,  with the correct 1 .  Analogous inverse 
substitutions can be used in expansions studied in section 2 to derive the q-Casimir 
operators from the classical invariants. Once again, the characteristic functional is 
the object that contains all the deformation properties. 
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4.12. Q-oscillafor realizufions on S U ( l , l ) q .  For any In) and 1, the eigenvalue of 
A ( n q l l p )  In) is positive. Therefore we can rewrite (4.17) expressing the inverse 
deformation as 

A Ballesteros and J Negro 

N = K 3 - l  

&+ = K + p ( K 3 )  = Ictg+(K3 - l)-' (4.22) 
1 

& = f - ( K 3 ) K -  = g-(K3 - 1 ) -  K- . 

The characteristic functional will be 

(4.23) 

4.5.3. SL1(2), functional reulizurions on Os(l) , .  Let us start now with the chain 

Os( 1)  *E?) Os( l )q  *(%e) SU(2), 

where A ( n q l j , )  is the unknown functional. We define 

l3 = N - j j = 0, $, 1 .  . . Jt = 6'gt(N) 3- = g-(N)iL. (4.24) 

From the straightforward transformation Os( 1) A(%') SU( 2), characterized by (4.7), 
we reach the expression for A ( n q l j a )  

A ( n q I j q )  = gt(Wg-(r / )  = [2j - NI,. (4.25) 

This equation again contains all the known single q-boson realizations of SU(2),. 
Holstein-Primakoff realizations suggested in [19] and [20] are obtained by identifying 
g+(N) = g - ( N )  = d m .  Dyson realizations obtained by using a coherent- 
state technique in [20!, are contained in (4.25) by making g - ( N )  = I ,  and 
the existence of an intertwining operator relating them with Holstein-Primakoff 
realizations is a particular case of the general equivalence property. 

Observe also that if we substitute (4.24) into the Os(l), Casimir [NIq -it& = 0 
and let it act on SU(2) representation space we get 

[I3 + jl& - 3 3  - 1Iq - lt3- = 0 .  

But from (4.21) 

and we finally obtain 

2 2 
1 3 3  - ;Iq + l&7- = [ j  + fl, 

which is the q-Casimir for SU(2), (equation (2.18)) 
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4.5.4. The only 

remaining expansion is the SU(1, l),  A'%q' SU(2), transformation. By applying 
the known characteristic functionals A(Il1,) and A ( I l j , )  from (2.38) and (4.12), 
respectively, and regarding the deformation definitions as 

SU(2), jiinctional realizations on SU(1, I), representation space. 

we finally obtain 

(4.27) 

C . ~ ~  1- 
I nr. neruiiiic chuice guides us io i'ne fuiiuwing redkzaiic)n: 

It is important to emphasize the fact that this is not the only way to reach (4.27). 
For instance, we might have chosen the path 

Casimirs can also be related. If we now start with 
2 
9 

[X, - f]; - X+K-  = [ l -  f ]  

and substitute IC,, IC, using (4.26) and (4.27), we have 

2 .  1 2  
1 3 3  + j + 1 - i1,[3 - 33 + 1Iq - I.', + j + 7.1 - 11,.'+.'- = [FL73 + j + 11J - 21, . 
After a lengthy but straightforward calculation on the space l j ,  m) this equality leads 
us again to the right q-Casimir [J,  - $1, t .'+,7- = [ j  + i]:. 
4.6. Functional realizations relating classical algebras 

Property 4 in section 2 implies that if we compute the limit q -+ 1 of a certain 
characteristic functional, the thus-obtained result characterizes all the possible 
classical functional realizations between the two involved non-deformed algebras. 
This limit turns out to be the identity if we are working with same type algebras. 
Hence we obtain, for instance, the non-deformed realizations of SU(2) in t e rm of 
the oscillator algebra by computing the classical limit of (4.7): 

2 

/\(nij) = i h / \ (n i j9 )  = gf(,V)y;(Nj = 2 j -  N .  (4.29; 
q-1 

The analogue of (4.5) is now 

J ,  = N - j j = 0, ;, 1 . . . J ,  = a+g;(N) J -  = g;(N) a .  (4.30) 
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The Hermitic solution gives us the classical Holstein-Primakoff realizations of SU(2) 
[17], and the so-called Dyson representation can he reached by choosing one of the 
go functions to be equal to I .  Besides, we have obtained infinitely more realizations. 
None of them is invertible, due to the same difficulty that appeared when we studied 

We want to point out that this result is again unique whatever the path to 
deform an oscillator-type algebra (quantum or not) into SU(2),. If we look at 
(4.52). we see that the characteristic functional of this deformation can be written 
as A ( n l j 9 )  = A(nlnq)A(n91jq) ,  and lim9-lA(nln9) = 1 (same type structures). 
Then 
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S W ) , .  

(4.31) 

In the following we summarize the classical characterizations among the rest of 
the types of algebras analysed here. 

4.6.1. SU(1,l)  realizations on the oscillator algebra. Defining the classical analogue to 
(4.1) as 

I C 3 = N + 1  l C + = a + g ; ( N )  I i - = g F ( N ) a  (4.32) 

expression (4.7) leads us to 

A ( n l l ) = g $ ( N ) g h ( N )  = N + 2 1 .  (4.33) 

Holstein-Primakoff and Dyson realizations are obtained as in the just-studied SU(2) 
case. 

4.6.2. SU(2) realizations on the SU(1,l) positive discrete series. We now hegin from 
(4.10) and write 

The corresponding limit is 

(2 j  + 1 - IC3) 
(IC3 + 1 )  ' 

A(1lj)  = g $ ( K 3 ) g O ( I C 3 )  = 

(4.34) 

(4.35) 

We may now write a classical action of SU(2) (with the Hermitic constrain) on 
discrete series vectors ( 1 , ~ ) :  

J 3 1 1 , 2 )  = ( z - j - l ) I l , z )  

J -  11, 2 )  = J ( z  - 1)(2 j  + 1 - 2 + 1) 11, 2 - 1) . 
J + I I , z )  = J ( z - 1 + 1 ) ( 2 j + 1 - t ) l 1 , z + l )  (4.36) 

Transformations given by (4.31). (4.33) and (4.35) allow us to transform one given 
Casimir into another following the reasoning outlined in section 4.5. 
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5. Final remarks 

Figure 1 shows the whole expansion scheme. Lower and upper triangles represents, 
respectively, classical and deformed structures. Arrows are pointing towards the 
algebra we obtain after each expansion. Invertible mappings associate SU(1, l ) .  
the oscillator group and their q-analogues, and are drawn with full lies. The 
rest of realizations (all ending in SU(2) structures and denoted with broken lines) 
are not invertible. Corresponding characteristic functionals are written and classical 
realizations are obtained by projecting on the lower plane ( q  = 1). 

S U V )  

Figure 1. A triangular prism containing all expansions that relate SU(2), SU(1, 1) and 
Os(l)-lype algebras. Quantum (9  # 1) structures lies on the upper face. while q = 1 
('classical') cases correspond lo the basis. Characteristic functionals labelling all possible 
q-realizations u c  explicitly given. 

There are some aspects that remain to be studied to complete the expansion 
framework outlined here. First of all, to investigate Hopf structures underlying these 
realizations and to study the q root of unity problems, since we believe that the latter 
could be a way to relate, on a deeper level, these three algebras. We have also used 
throughout this paper the ' n '  representation of the oscillator group. However, other 
non-equivalent representations could play a relevant role in the study of more general 
links among these three types of algebras. Remark also that all new realizations 
described here can be used to generalize quantum coherent-state theory, following 
the method given in [19]. 
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